Skip to main content
Log in

Single-Walled Carbon Nanotube-Based Chemi-Capacitive Sensor for Hexane and Ammonia

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Two configurations of single-walled carbon nanotube-based chemi-capacitive gas sensors were fabricated, i.e., horizontal and vertical. Further, their sensing properties for hexane and ammonia (NH3) vapor were characterized and compared with chemi-resistive-type sensing properties. Upon exposure to hexane and NH3 vapor, both capacitance and resistance varied as the analyte concentration increased. The sensing sensitivity measured along the horizontal direction increased with the device resistance. However, the capacitive sensing response along the vertical direction was independent of the number and fraction of semi-conductive single-walled carbon nanotubes. Furthermore, the vertical chemi-capacitive sensing response was dependent on the dipole moment of analytes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, Y., Yeow, J.T.W.: A review of carbon nanotubes-based gas sensors. J. Sens., 493904, 2009

  2. Lupan, O., Postica, V., Cretu, V., Wolff, N., Duppel, V., Kienle, L., Adelung, R.: Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications. Phys. Status. Solidi RRL. 10, 260–266 (2016)

    Article  CAS  Google Scholar 

  3. Wang, B., Zhu, L.F., Yang, Y.H., Xu, N.S., Yang, G.W.: Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 112, 6643–6647 (2008)

    Article  CAS  Google Scholar 

  4. Ahn, M.-W., Park, K.-S., Heo, J.-H., Park, J.-G., Kim, D.-W., Choi, K.J., Lee, J.-H., Hong, S.-H.: Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008)

    Article  Google Scholar 

  5. Zhang, Y., He, X., Li, J., Miao, Z., Huang, F.: Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators, B 132, 67–73 (2008)

    Article  CAS  Google Scholar 

  6. Choi, S.-W., Katoch, A., Zhang, J., Kim, S.S.: Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens. Actuators, B 176, 585–591 (2013)

    Article  CAS  Google Scholar 

  7. Han, N., Wu, X., Chai, L., Liu, H., Chen, Y.: Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens. Actuator B 150, 230–238 (2010)

    Article  CAS  Google Scholar 

  8. Arif, M., Sanger, A., Singh, A.: Highly sensitive NiO nanoparticle based chlorine gas sensor. J. Electron. Mater. 47, 3451–3458 (2018)

    Article  CAS  Google Scholar 

  9. Chen, G., Paronyan, T.M., Pigos, E.M., Harutyunyan, A.R.: Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2, 1–7 (2012)

    Google Scholar 

  10. Chen, T., Wei, L., Zhou, Z., Shi, D., Wang, J., Zhao, J., Yu, Y., Wang, Y., Zhang, Y.: Highly enhanced gas sensing in single-walled carbon nanotube-based thin-film transistor sensors by ultraviolet light irradiation. Nanoscale Res. Lett. 7, 644 (2012)

    Article  Google Scholar 

  11. Snow, E.S., Perkins, F.K., Robinson, J.A.: Chemical vapor detection using single-walled carbon nanotubes. Chem. Soc. Rev. 35, 790–798 (2006)

    Article  CAS  Google Scholar 

  12. He, L., Jia, Y., Meng, F., Li, M., Liu, J.: Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes. Mater. Sci. Eng., B 163, 76–81 (2009)

    Article  CAS  Google Scholar 

  13. Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014–21020 (2006)

    Article  CAS  Google Scholar 

  14. Leghrib, R., Llobet, E., Pavelko, R., Vasiliev, A.A., Felten, A., Pireaux, J.J.: Gas sensing properties of MWCNTs decorated with gold or tin oxide nanoparticles. Procedia Chem. 1, 168–171 (2009)

    Article  CAS  Google Scholar 

  15. Wang, Y., Yang, Z., Hou, Z., Xu, D., Wei, L., Kong, E.S.-W., Zhang, Y.: Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens. Actuators, B 150, 708–714 (2010)

    Article  CAS  Google Scholar 

  16. Slobodian, P., Riha, P., Lengalova, A., Svoboda, P., Saha, P.: Multi-walled carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon 49, 2499–2507 (2011)

    Article  CAS  Google Scholar 

  17. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)

    Article  CAS  Google Scholar 

  18. Someya, T., Small, J., Kim, P., Nuckolls, C., Yardley, J.T.: Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877–881 (2003)

    Article  CAS  Google Scholar 

  19. Govindhan, M., Lafleur, T., Adhikari, B.-R., Chen, A.: Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electronalysis 27, 902–909 (2015)

    Article  CAS  Google Scholar 

  20. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M.: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (2003)

    Article  CAS  Google Scholar 

  21. Suehiro, J., Zhou, G., Hara, M.: Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J. Phys. D Appl. Phys. 36, L109–114 (2003)

    Article  CAS  Google Scholar 

  22. Liu, X., Zhang, S., Pan, B.: Potential of carbon nanotubes in water treatment. Provisional chapter. http://dx.doi.org/10.5772/51332

  23. Robinson, J.A., Snow, E.S., Perkins, F.K.: Improved chemical detection using single-walled carbon nanotube network capacitors. Sens. Actuators, A 135, 309–314 (2007)

    Article  CAS  Google Scholar 

  24. Zhang, T., Mubeen, S., Myung, N.V., Deshusses, M.A.: Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19, 332001 (2008)

    Article  Google Scholar 

  25. Stadermann, M., Papadakis, S.J., Falvo, M.R., Novak, J., Snow, E., Fu, Q., Liu, J., Fridman, Y., Boland, J.J., Superfine, R., Washburn, S.: Nanoscale study of conduction through carbon nanotube networks. Phys. Rev. B 69, 201402 (2004)

    Article  Google Scholar 

  26. Takahashi, K., Hahn, T.: Investigation of temperature dependency of electrical resistance changes for structural management of graphite/polymer composite. J. Compos. Mater. 45, 2603–2611 (2011)

    Article  CAS  Google Scholar 

  27. Lim, J.H., Phiboolsirichit, N., Mubeen, S., Deshusses, M.A., Mulchandani, A., Myung, N.V.: Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes. Nanotechnology 21, 075502 (2010)

    Article  Google Scholar 

  28. Lim, J.H., Phiboolsirichit, N., Mubeen, S., Rheem, Y., Deshusses, M.A., Mulchandani, A., Myung, N.V.: Electrical and sensing properties of single-walled carbon nanotubes network: effect of alignment and selective breakdown. Electroanalysis 22, 99–105 (2010)

    Article  CAS  Google Scholar 

  29. Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009)

    Article  CAS  Google Scholar 

  30. Wertheim, M.S.: Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments. J. Chem. Phys. 55, 4291 (1971)

    Article  CAS  Google Scholar 

  31. Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) project (Grant 2013M3A6B1078870) of the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science, ICT, and Future Planning and Technology Innovation Program (20002694, Gas sensor) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Fundamental Research Program of the Korea Institute of Materials Science (Grant POC2930, PNK6170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hong Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, KH., Lee, JY. et al. Single-Walled Carbon Nanotube-Based Chemi-Capacitive Sensor for Hexane and Ammonia. Electron. Mater. Lett. 15, 712–719 (2019). https://doi.org/10.1007/s13391-019-00177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00177-0

Keywords

Navigation