Skip to main content
Log in

Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Positive temperature coefficient (PTC) composites have received significant attention as electronic applications such as resettable fuses, safe batteries, self-regulating heating device and temperature sensors. Despite PTC composites preferred to industrial applications due to their easy processing, low density, good flexibility, and toughness, but poor reproducibility due to the conductive network randomly deconstructing or reconstructing in the molten state of polymer matrix delays the practical application. In particular, PTC intensity and reproducibility are important factors for application to temperature sensors. Herein, we present ethylene–vinyl acetate (EVA)-based PTC composites that demonstrate an enhanced intensity and reproducibility by controlling filler mobility and thermal expansion via combination of 0-D and 2-D carbon filler. A Carbon black (CB)/Exfoliated graphite (ExG)/EVA composite exhibited the high PTC intensity and superior reproducibility at repeated thermocycles. Furthermore, the CB/ExG/EVA composites exhibited a temperature sensitivity of approximately 14 times higher than that reported in another temperature sensor literature. The formation and inhibition of conducting networks on the controlled filler combination exhibited the synergistic effects of the 0-D and 2-D carbon fillers. The PTC composite with combination of 0-D and 2-D fillers can detect human skin temperature through real-time monitoring and showed an accuracy of 0.41 °C. This work provides a feasibility of PTC temperature sensor in specific applications that require relatively high temperature sensitivity and flexibility, such as monitoring the human body temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chun KY, Oh Y, Rho J et al (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857. https://doi.org/10.1038/nnano.2010.232

    Article  CAS  Google Scholar 

  2. Hansen TS, West K, Hassager O, Larsen NB (2007) Highly stretchable and conductive polymer material made from poly(3,4-ethylenedioxythiophene) and polyurethane elastomers. Adv Func Mater 17:3069–3073. https://doi.org/10.1002/adfm.200601243

    Article  CAS  Google Scholar 

  3. Stankovich S, Dikin DA, Dommett GH et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  4. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  5. Gu H, Guo J, Wei H et al (2015) Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids. Adv Mater 27:6277–6282. https://doi.org/10.1002/adma.201501728

    Article  CAS  Google Scholar 

  6. Hu Y, Chen W, Lu L, Liu J, Chang C (2010) Electromechanical actuation with controllable motion based on a single-walled carbon nanotube and natural biopolymer composite. ACS Nano 4:3498–3502. https://doi.org/10.1021/nn1006013

    Article  CAS  Google Scholar 

  7. Xu Z, Wang N, Li N et al (2016) Liquid sensing behaviors of conductive polypropylene composites containing hybrid fillers of carbon fiber and carbon black. Compos Part B Eng 94:45–51. https://doi.org/10.1016/j.compositesb.2016.03.047

    Article  CAS  Google Scholar 

  8. Mamunya Y, Matzui L, Vovchenko L et al (2019) Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos Sci Technol 170:51–59. https://doi.org/10.1016/j.compscitech.2018.11.037

    Article  CAS  Google Scholar 

  9. Bao SP, Liang GD, Tjong SC (2011) Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49:1758–1768. https://doi.org/10.1016/j.carbon.2010.12.062

    Article  CAS  Google Scholar 

  10. Deng H, Skipa T, Bilotti E et al (2010) Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv Func Mater 20:1424–1432. https://doi.org/10.1002/adfm.200902207

    Article  CAS  Google Scholar 

  11. Chu K, Lee SC, Lee S, Kim D, Moon C, Park SH (2015) Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 7:471–478. https://doi.org/10.1039/c4nr04489d

    Article  CAS  Google Scholar 

  12. Rybak A, Boiteux G, Melis F, Seytre G (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70:410–416. https://doi.org/10.1016/j.compscitech.2009.11.019

    Article  CAS  Google Scholar 

  13. Liu Y, Zhang H, Porwal H et al (2017) Universal control on pyroresistive behavior of flexible self-regulating heating devices. Adv Func Mater 27:1702253. https://doi.org/10.1002/adfm.201702253

    Article  CAS  Google Scholar 

  14. Zha J-W, Wu D-H, Yang Y, Wu Y-H, Li RKY, Dang Z-M (2017) Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. RSC Adv 7:11338–11344. https://doi.org/10.1039/c6ra27367j

    Article  CAS  Google Scholar 

  15. Xu HP, Wu YH, Yang DD, Wang JR, Xie HQ (2011) Study on theories and influence factors of PTC property in polymer-based conductive composites. Rev Adv Mater Sci 27:173–183

    Google Scholar 

  16. Bao SP, Liang GD, Tjong SC (2009) Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite hybrid nanocomposites. IEEE Trans Nanotechnol 8:729. https://doi.org/10.1109/tnano.2009.2023650

    Article  Google Scholar 

  17. Yi X-S, Shen L, Pan Y (2001) Thermal volume expansion in polymeric PTC composites: a theoretical approach. Compos Sci Technol 61:949–956. https://doi.org/10.1016/S0266-3538(00)00191-3

    Article  CAS  Google Scholar 

  18. Park S-J, Kim H-C, Kim H-Y (2002) Roles of work of adhesion between carbon blacks and thermoplastic polymers on electrical properties of composites. J Colloid Interface Sci 255:145. https://doi.org/10.1006/jcis.2002.8481

    Article  CAS  Google Scholar 

  19. Bystrov VS, Bdikin IK, Silibin MV et al (2019) Pyroelectric properties of ferroelectric composites based on polyvinylidene fluoride (PVDF) with graphene and graphene oxide. Ferroelectrics 541:17–24. https://doi.org/10.1080/00150193.2019.1574637

    Article  CAS  Google Scholar 

  20. Li G, Hu C, Zhai W et al (2016) Particle size induced tunable positive temperature coefficient characteristics in electrically conductive carbon nanotubes/polypropylene composites. Mater Lett 182:314–317. https://doi.org/10.1016/j.matlet.2016.07.020

    Article  CAS  Google Scholar 

  21. Zhang P, Wang B-b (2018) Positive temperature coefficient effect and mechanism of compatible LLDPE/HDPE composites doping conductive graphite powders. J Appl Polym Sci 135:46453. https://doi.org/10.1002/app.46453

    Article  CAS  Google Scholar 

  22. Li J, Chang C, Li X, Li Y, Guan G (2019) A new thermal controlling material with positive temperature coefficient for body warming: preparation and characterization. Materials 12:1758. https://doi.org/10.3390/ma12111758

    Article  CAS  Google Scholar 

  23. Shen L, Lou ZD, Qian YJ (2007) Effects of thermal volume expansion on positive temperature coefficient effect for carbon black filled polymer composites. J Polym Sci Part B Polym Phys 45:3078–3083. https://doi.org/10.1002/polb.21307

    Article  CAS  Google Scholar 

  24. Zhang X, Zheng S, Zheng X, Liu Z, Yang W, Yang M (2016) Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface. Phys Chem Chem Phys 18:8081–8087. https://doi.org/10.1039/c6cp00398b

    Article  CAS  Google Scholar 

  25. Nakano H, Shimizu K, Takahashi S, Kono A, Ougizawa T, Horibe H (2012) Resistivity–temperature characteristics of filler-dispersed polymer composites. Polymer 53:6112–6117. https://doi.org/10.1016/j.polymer.2012.10.046

    Article  CAS  Google Scholar 

  26. Ryu SH, Kim S, Kwon YT et al (2019) Decorating surface charge of graphite nanoplate using an electrostatic coupling agent for 3-dimensional polymer nanocomposite. J Appl Polym Sci 137:48390. https://doi.org/10.1002/app.48390

    Article  CAS  Google Scholar 

  27. Ren D, Zheng S, Huang S, Liu Z, Yang M (2013) Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites. J Appl Polym Sci 129:3382–3389. https://doi.org/10.1002/app.38606

    Article  CAS  Google Scholar 

  28. Sun C, Zhao W, Chen S (2008) Studies on the comprehensive performance of graphite and additives filled high density polyethylene composites. J Appl Polym Sci 107:4000–4004. https://doi.org/10.1002/app.27480

    Article  CAS  Google Scholar 

  29. Fang Y, Zhao J, Zha J-W, Wang D-R, Dang Z-M (2012) Improved stability of volume resistivity in carbon black/ethylene-vinyl acetate copolymer composites by employing multi-walled carbon nanotubes as second filler. Polymer 53:4871–4878. https://doi.org/10.1016/j.polymer.2012.08.035

    Article  CAS  Google Scholar 

  30. Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45:1446–1452. https://doi.org/10.1016/j.carbon.2007.03.029

    Article  CAS  Google Scholar 

  31. Li Q, Kim NH, Yoo G-H, Lee JH (2009) Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Compos Part B Eng 40:218–224. https://doi.org/10.1016/j.compositesb.2008.11.002

    Article  CAS  Google Scholar 

  32. Wang M, Jamal R, Wang Y, Yang L, Liu F, Abdiryim T (2015) Functionalization of graphene oxide and its composite with poly(3,4-ethylenedioxythiophene) as electrode material for supercapacitors. Nanoscale Res Lett 10:370. https://doi.org/10.1186/s11671-015-1078-x

    Article  CAS  Google Scholar 

  33. Prashantha K, Lee JH (2011) Positive temperature coefficient characteristics of multi-walled carbon nanotube filled polyvinylidene fluoride nanocomposites. J Macromol Sci Part A 48:737–741. https://doi.org/10.1080/10601325.2011.596056

    Article  CAS  Google Scholar 

  34. Liang J-Z (2019) Electrical conductivities of high-density polyethylene composites reinforced with carbon fiber and nanometer carbon black. Polym Compos 40:E1801–E1807. https://doi.org/10.1002/pc.25166

    Article  CAS  Google Scholar 

  35. Stauffer D, Aharony A (2018) Introduction to percolation theory. Taylor & Francis, Milton Park

    Book  Google Scholar 

  36. Ohe K, Naito Y (1971) A new resistor having an anomalously large positive temperature coefficient. Jpn J Appl Phys 10:99–108. https://doi.org/10.1143/jjap.10.99

    Article  CAS  Google Scholar 

  37. Chan C-M, Cheng C-L, Yuen MMF (1997) Electrical properties of polymer composites prepared by sintering a mixture of carbon black and ultra-high molecular weight polyethylene powder. Polym Eng Sci 37:1127–1136. https://doi.org/10.1002/pen.11757

    Article  CAS  Google Scholar 

  38. Zhang C, Ma C-A, Wang P, Sumita M (2005) Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 43:2544–2553. https://doi.org/10.1016/j.carbon.2005.05.006

    Article  CAS  Google Scholar 

  39. Seo M-K, Rhee K-Y, Park S-J (2011) Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites. Current Appl Phys 11:428–433. https://doi.org/10.1016/j.cap.2010.08.013

    Article  Google Scholar 

  40. Shih WP, Tsao LC, Lee CW et al (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sens (Basel) 10:3597–3610. https://doi.org/10.3390/s100403597

    Article  CAS  Google Scholar 

  41. Kaur A, Singh RC (2019) Temperature sensor based on exfoliated graphene sheets produced by microwave assisted freezing induced volumetric expansion of carbonated water. J Mater Sci Mater Electron 30:5791–5807. https://doi.org/10.1007/s10854-019-00878-0

    Article  CAS  Google Scholar 

  42. Meyer J (1974) Stability of polymer composites as positive-temperature-coefficient resistors. Polym Eng Sci 14:706–716. https://doi.org/10.1002/pen.760141009

    Article  CAS  Google Scholar 

  43. Karimov KS, Khalid F, Chani M et al (2012) Carbon nanotubes based flexible temperature sensors. Optoelectron Adv Mater Rapid Commun 6:194–196

    CAS  Google Scholar 

  44. Dankoco M, Tesfay G, Bènevent E, Bendahan M (2016) Temperature sensor realized by inkjet printing process on flexible substrate. Mater Sci Eng B 205:1–5

    Article  CAS  Google Scholar 

  45. Sehrawat P, Islam S, Mishra P, Khanuja M (2018) A multi-prong approach towards the development of high performance Temperature sensor using MWCNTs/Al2O3 composite film. Mater Res Bull 99:1–9

    Article  CAS  Google Scholar 

  46. Cen-Puc M, Pool G, Oliva-Avilés AI, May-Pat A, Avilés F (2017) Experimental investigation of the thermoresistive response of multiwall carbon nanotube/polysulfone composites under heating-cooling cycles. Compos Sci Technol 151:34–43. https://doi.org/10.1016/j.compscitech.2017.08.003

    Article  CAS  Google Scholar 

  47. Trung TQ, Ramasundaram S, Hwang BU, Lee NE (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509. https://doi.org/10.1002/adma.201504441

    Article  CAS  Google Scholar 

  48. Annabestani M, Esmaeili-Dokht P, Fardmanesh M (2020) A novel, low cost, and accessible method for rapid fabrication of the modifiable microfluidic devices. Sci Rep 10:16513. https://doi.org/10.1038/s41598-020-73535-w

    Article  CAS  Google Scholar 

  49. Osman AF, Alakrach AM, Kalo H, Azmi WNW, Hashim F (2015) In vitro biostability and biocompatibility of ethyl vinyl acetate (EVA) nanocomposites for biomedical applications. RSC Adv 5:31485–31495. https://doi.org/10.1039/C4RA15116J

    Article  CAS  Google Scholar 

  50. Schneider C, Langer R, Loveday D, Hair D (2017) Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Controll Release 262:284–295. https://doi.org/10.1016/j.jconrel.2017.08.004

    Article  CAS  Google Scholar 

  51. Jeon J, Lee HB, Bao Z (2013) Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater 25:850–855. https://doi.org/10.1002/adma.201204082

    Article  CAS  Google Scholar 

  52. Yang J, Wei D, Tang L et al (2015) Wearable temperature sensor based on graphene nanowalls. RSC Adv 5:25609–25615. https://doi.org/10.1039/c5ra00871a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2015R1A5A1037548). This research was supported by Future Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2019M3D1A2104158). This research was supported by R&BD Program through the INNOPOLIS funded by Ministry of Science and ICT (2020-IT-RD-0139).

Author information

Authors and Affiliations

Authors

Contributions

G.M.G. conceived the experiments and prepared the manuscript. Y.S., S.P., M.L., B.J., and J.P. helped in performing analysis. H.B.C. discussed the results and contributed toward editing the manuscript. Y.H.C. contributed to this manuscript, accepted responsibility for the conducted research, and provided final approval. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yong-Ho Choa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, GM., Park, S., Lim, M. et al. Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites. J Mater Sci 57, 18037–18050 (2022). https://doi.org/10.1007/s10853-022-07317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07317-2

Navigation